



Subject EMPIRICAL FORMULAS FOR ION PUMPING INFORMATION OBTAINED FROM NUCLEAR PHYSICS INSTITUTE, NOVOSIBIRSK

The geometry of a single pumping hole is shown below

The pumping speed S versus pressure p curve looks like

showing that the pumping speed per hole is essentially constant S_{O} down to some minimum pressure p_{\min} . Some simple characteristics are the following:

(1) The effect of δ is only in the conductance of gas to the hole opening because the gas has to diffuse through the gap δ to reach the hole opening where it is then pumped out. Neither $S_{\mbox{\scriptsize O}}$ nor $p_{\mbox{\scriptsize min}}$ depends on δ .

(2) The dependence of S_{0} and p_{\min} on the magnetic field strength H is only through the combination H ϕ . Therefore smaller hole diameter can always be compensated by higher magnetic field.

(3)
$$p_{min}$$
 (torr) = $\frac{5 \times 10^4}{\phi^3 V \left(H\phi - \frac{3.6 \times 10^5}{H\phi}\right)^3}$

where

(4) S_O (liter/sec) = 2.5x10⁻⁶ a \sqrt{V} (H ϕ - $\frac{3.6x10}{H}\phi$) (1 - e^{-2.5 ϕ) where}

(5) The range of validity of these relationships has been experimentally tested to be

$$\begin{cases} a \text{ and } \phi = 0.15 \text{ to } 5 \text{ cm} \\ v &= 1 \text{ to } 10 \text{ kV} \\ p &= 10^{-5} \text{ to } 10^{-10} \text{ torr} \\ H &= 0.5 \text{ to } 12 \text{ kG (actually tested but believed} \\ &= \text{ to be valid to } 20 \text{ kG)} \end{cases}$$

(6) As an example we take

$$\begin{cases} a = \phi = 1 \text{ cm} \\ V = 5 \text{ kV} = 5 \text{x} 10^3 \text{ volt} \\ H = 20 \text{ kG} = 2 \text{x} 10^4 \text{ Gauss} \end{cases}$$

Then we get

$$\begin{cases} p_{min} = \frac{1}{8} \times 10^{-11} \text{ torr} \\ S_0 = 3.2 \text{ l/sec per hole} \end{cases}$$